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Abstract-In this report it is suggested that at early stages of evolution ribosomes were 
responsible for synthesizing short oligonucleotide cDNA packets which formed the protogenic 
tandem repetitive sequences. Ribosomal RNA (rRNA) could have been the most probable 
template for such a synthesis. rRNA has homology with the monomers of tandem hypervariable 
repetitive elements of the genome. A model for the proposed participation of rRNA in the genesis 
of genomic fragments is provided by analysis of the active center of GTP-binding proteins. The 
role of oligonucleotides, synthesized by the ribosome, in the context of mechanisms of genome 
regulation, genes responsible for disease and human longterm memory formation are also 
discussed. 

Introduction 

The discovery of RNA enzymes, namely, ribozymes, 
along with the application of genetic engineering in 
the study of ribosomes revived an interest in alternate 
functions of ribosomes. Recently the groups of Noller 
and Cech (1.2) have stressed the significance of ribo- 
somal RNA (rRNA) in the functioning of ribosomes. 

In the present report it is suggested that the mech- 
anisms of protein synthesis are also involved in the 
synthesis of oligonucleotides. For example, three of 
four subunits of RNA-replicase of both phages Q-/3 
and f2, elongation factors EF-Tu, EF-Ts and the ri- 
bosomal protein SI, are related to ribosomes (3, 4). 
Ribosomal protein L3 has been demonstrated to inde- 
pendently replicate RNA molecules (5). Furthermore 
RNA molecules are able to synthesize a complemen- 
tary RNA, thus increasing the number of their copies 
in vitro (6, 7). Ribosomes and the elongation factor 

EF-G interact with RNA-polymerase of B. subtilis (8, 
9). Genomic ribosomal operons include genes for the 
EF-G, EF-Tu, EF-Ts, subunits of RNA-polymerase, 
DNA-primase, and RNAse P (10-15). Interestingly, 
self-splicing RNA introns may contain genes for the 
site-specific DNA-endonuclease and sequences analo- 
gous to the gene for reverse transcriptase (16). Genes 
present for nucleotide metabolism in the ribosomal 
operons and the ability of proteins connected with 
the ribosome to synthesize oligonucleotides suggest 
that earlier in evolution, ribosomes were capable of 
synthesizing short oligonucleotides on the rRNA tem- 
plate, which in turn formed the tandem genomic rep- 
etitions. 

Results 

Homologies of various sequences of the human rRNA 
were found when compared to monomers of both 
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529 545 
1. CCTCCACCCGCCCTCC human 28s rRNA (DC-H) 

III1 IIll II IIIII 
[ GGAGGTGGGCAGGAGGln "minisatellite" repet 

16 2 
2. GGTGGCGATTCTGAG human 5,8S rRNA (1-H) 

.ition (17) 

IIIIIII IIIIIII 
[ GGTGGCGGTTCTGAGln phage Ml3 protein III repet. (18) 

3045 3026 
3. CCCCCTCTCTCTCTCTCTCT human 28s rRNA (1-H) 

IIIlllIIIIIIIIIIIl I 
[CCCCCTCTCTCTCTCTCTGTln TVR-6 - repetition (19) 

"GGG GGG - insertion between T and C 

4730 4741 
4. CCCCCGCCTGTC human 28s rRNA (DC-H) 

Illll IIIIII 
[ GNGGG-GNACAGln hypervariable region 3'of 

alfa-globin gene (20). 

664 673 807 815 
5. AGTTAAAAAG 6. GAAAAAATT human 18s rRNA (D-H) 

III IllIll IIIIIII I 
[AGT-AAAAAG]n [GAAAAAACTI n mouse satellite DNA (21) 

Fig. 1 

human and mouse hypervariable genomic repetitive 
elements. Alignment of gene and protein sequences 
were prepared by a computer algorithm (provided by 
Dr A. Ageev). This algorithm compared sequences in 
4 variants: direct-homology (D-H), invert-homology 
(I-H), direct complement homology (DC-H) and in- 
vert complement homology (IC-H) (Fig. 1). 

CGC repetitions occur quite frequently in the 28 
rRNA sequence. This may serve as a source of GTG 
(CAC) repetitions (CG+TG transition) (22). (CT)n 
fragments, used in DNA ‘fingerprint’ technology, are 
also present in 28s rRNA. The 3’ end of 28s rRNA 
contain many GACA and GATA-sequences, repeti- 
tions of which are dispersed along the genome (23). It 
can be speculated that rRNA is the origin of certain 
exons. A correlation between the two spatially dis- 
tinct peptides of the active center of the GTP-binding 
proteins (GTl-BP) and 28s rRNA are present. 

Gly - X -X - X -X - Gly - Lys 
53 59 
Gly - Gly-Tyr-Gly-Gly-Gly - Lys 

Fig. 2 

Figure 2 represents the position in the ‘peptide’ at 
nucleotide 679 of the 28s rRNA. The genes, encoding 
these two peptides follow each other in the rRNA 
sequence. 

Discussion 

The appearance of homology between rRNA and 
many peptides, leads to the possibility that the rRNA 
is not only the origin of the hypervariable repeti- 
tion but may also be a progenitor of these peptides. 
These peptides are components of the proteins: kerati- 
nis, helix-destabilising proteins, informatin, tubulins, 
dihydrofolate reductase, insulin-like growth factor, 
calcium-dependent protease, TRK-oncogene, andro- 
gen receptor, NADP-cytochrom B5 reductase, DNA- 
methylase and many others (25-31). Tandem repe- 
titions like (GTG)n, (GT)n, (CT)n, (GGC)n, (GC)n, 

Gly - X - X - Gly GTP - BP (24) 
60 63 

Gly-Pro-Pro-Gly 
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(CCG)n are characteristic to both rRNA and genes 
encoding protein (3 1). Thus, one can assume that the 
genes of some proteins were formed by the rRNA-de- 
rived oligonucleotides. According to Bostoc and Sam- 
ner ‘a considerable part of so-called (genome) unique 
sequences is likely to consist of repeating sequences’ 
(32). 

It is suggested in this report that the transition 
from the RNA-world into the DNA-world may have 
been mediated through the ribosomes. Proto-ribo- 
somes may construct oligonucleotides by the cut- 
ting and splicing (by rRNA) of parts of the proto- 
tRNAs. Thus tRNAs may be bringing not only pep- 
tide monomers (amino acids), but monomers for 
oligonucleotides as well (proto-anticodons). These 
oligos were being translated into DNA-form by re- 
verse transcriptase. 

The generation of oligonucleotides by ribosomes 
may take place in cells. In this scenario, ribosomes 
synthesizing both oligonucleotides and peptides that 
correspond to these oligonuclcotides, and could con- 
trol both cytoplasmic and nuclear activity, thus per- 
forming cellular monitoring. This monitoring could 
be dependent on changes in cytoplasmic ion concen- 
tration and, ultimately, on extracellular signalling. 

Synthesis of these oligonucleotides could take 
place in the ribosomes bound to the endoplasmic 
reticulum (ER). The ER is the ramified external nu- 
clear membrane, and its channels might be used by 
the oligonucleotides to penetrate into the nucleus. 

Ribosomal oligonucleotide synthesis can be asso- 
ciated with a series of diseases. For example GGN- 
and CGG-repeated elements are involved in genesis 
of spinal and bulbal muscular atrophy, also known as 
Kennedy disease and fragile X syndrome (33). 

Possible ramifications of ribosome mediated syn- 
thesis of oligonucleotides could be the following: 

a) regulation of gene expression (Considerable 
portion of the active genome regions, TATA-box, 
GCC-, (on-blocks, Hinf-repetitions, Shi-sites and 
others (17, 34, 35) are homologous to rRNA); 

b) supply of the inert genetic material, which later 
will be used in chromosomal reduplication; 

c) heterochromatinization of the genome by 
oligonucleotides may cause the mechanism of cell di- 
vision to turn on. In this case ribosomes could work 
as a genetic timer of the cell. Involvement of inert 
material of heterochromatin in the rapid reduplication 
of euchromatin may lead to both the increase in the 
level of the latter and decrease in the level of het- 
erochromatin, thus maintaining the genetic status of 
the cell, namely, the euchromatine/heterochromatine 
ratio. 
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This hypothesis concerning simultaneous synthesis 
of oligonucleotides and corresponding peptides may 
shed light on the problem of long-term memory in 
both humans and animals. Existing hypotheses may 
involve either the reverberation of the electric current 
in the neuronal networks, or the chemical modifica- 
tion of macromolecules, mainly proteins (36). How- 
ever, the physiological alterations of electric current 
by electricshock therapy or by chemical methods does 
not lead to the long-term memory loss. The relatively 
short life-time of peptides in comparison with the 
time of existence of the long-term memory, makes 
the significance of the proteins in this process highly 
dubious. 

One can speculate that consecutive synthesis of 
oligonucleotides and placement into the genome with 
the concurrent expression of the given tandem mo- 
tif may restore metabolic processes in neurons. Thus 
long-term memory may be recorded by the ge- 
nomic tandem repets, generated in ribosomes, utiliz- 
ing rRNA as a synthetic matrix. Since this hypothesis 
is applicable to any cell in the organism, it implies 
that the usual cellular structures, conciliating cellu- 
lar metabolism with its genome fixation, may explain 
the possible reproduction of the long-term memory 
engram and preservation of information in the cell. 

Furthermore, it may be understated that the func- 
tion of ribosomes is not exclusively in translation of 
nucleotide sequence. The ribosome has given birth 
to the genome and continues supplying it with its 
‘ideas’, thus regulating genomic function and setting 
the life term of the genome, cell, and ultimately the 
organism itself. 
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